Thumbnail
Access Restriction
Subscribed

Author Gbenga, Dada Emmanuel ♦ Ramlan, Effirul Ikhwan
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2016
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Particle swarm optimization (PSO) ♦ Swarm intelligence ♦ Swarm robotics
Abstract One of the most widely used biomimicry algorithms is the Particle Swarm Optimization (PSO). Since its introduction in 1995, it has caught the attention of both researchers and academicians as a way of solving various optimization problems, such as in the fields of engineering and medicine, to computer image processing and mission critical operations. PSO has been widely applied in the field of swarm robotics, however, the trend of creating a new variant PSO for each swarm robotic project is alarming. We investigate the basic properties of PSO algorithms relevant to the implementation of swarm robotics and characterize the limitations that promote this trend to manifest. Experiments were conducted to investigate the convergence properties of three PSO variants (original PSO, SPSO and APSO) and the global optimum and local optimal of these PSO algorithms were determined. We were able to validate the existence of premature convergence in these PSO variants by comparing 16 functions implemented alongside the PSO variant. This highlighted the fundamental flaws in most variant PSOs, and signifies the importance of developing a more generalized PSO algorithm to support the implementation of swarm robotics. This is critical in curbing the influx of custom PSO and theoretically addresses the fundamental flaws of the existing PSO algorithm.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2016-07-01
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 49
Issue Number 1
Page Count 25
Starting Page 1
Ending Page 25


Open content in new tab

   Open content in new tab
Source: ACM Digital Library