Access Restriction

Author Zeena, Samueel ♦ Mohammed, Mohammed ♦ Hussein, Karim
Source Directory of Open Access Journals (DOAJ)
Content type Text
Publisher EDP Sciences
File Format PDF
Date Created 2018-05-14
Copyright Year ©2018
Language English ♦ French
Subject Domain (in LCC) TA1-2040
Subject Keyword Engineering (General) ♦ Technology ♦ Civil engineering (General)
Abstract In many road construction projects, if weak soil exists, then uncontrollable settlement and critical load carrying capacity are major difficult problems to the safety and serviceability of roads in these areas. Thus ground improvement is essential to achieve the required level of performance. The paper presents results of the tests of four categories. First category was performed on saturated soft bed of clay without any treatment, the second category shed light on the improvement achieved in loading carrying capacity and settlement as a result of reinforcing with conventional sand columns at area replacement ratio = 0.196. The third set investigates the bed reinforced by sand columns stabilized with dry silica fume at different percentages (3, 5 and 7%) and the fourth set investigates the behavior of sand columns treated with slurry silica fume at two percentages (10 and 12%). All sand columns models were constructed at (R.D= 60%). Model tests were performed on bed of saturated soil prepared at undrained shear strength between 16-20 kPa for all models. For all cases, the model test was loaded gradually by stress increments up to failure. Stress deformation measurements are recorded and analyzed in terms of bearing improvement ratio and settlement reduction ratio. Optimum results were indicated from soil treated with sand columns stabilized with 7% dry silica fume at medium state reflecting the highest bearing improvement ratio (3.04) and the settlement reduction ratio (0.09) after 7 days curing. While soil treated with sand columns stabilized with 10% slurry silica fume provided higher bearing improvement ratio 3.13 with lower settlement reduction ratio of 0.57 after 7-days curing.
ISSN 2261236X
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG ♦ Career/Technical Study
Learning Resource Type Article
Publisher Date 2018-01-01
e-ISSN 2261236X
Journal MATEC Web of Conferences
Volume Number 162
Starting Page 01007

Source: Directory of Open Access Journals (DOAJ)