Thumbnail
Access Restriction
Open

Author Schwenke, Daryl O. ♦ Tokudome, Takeshi ♦ Shirai, Mikiyasu ♦ Hosoda, Hiroshi ♦ Horio, Takeshi ♦ Kishimoto, Ichiro ♦ Kangawa, Kenji
Source Paperity
Content type Text
Publisher Oxford University Press
File Format PDF ♦ HTM / HTML
Copyright Year ©2008
Abstract Chronic exposure to hypoxia, a common adverse consequence of most pulmonary disorders, can lead to a sustained increase in pulmonary arterial pressure (PAP), right ventricular hypertrophy, and is, therefore, closely associated with heart failure and increased mortality. Ghrelin, originally identified as an endogenous GH secretagogue, has recently been shown to possess potent vasodilator properties, likely involving modulation of the vascular endothelium and its associated vasoactive peptides. In this study we hypothesized that ghrelin would impede the pathogenesis of pulmonary arterial hypertension during chronic hypoxia (CH). PAP was continuously measured using radiotelemetry, in conscious male Sprague Dawley rats, in normoxia and during 2-wk CH (10% O2). During this hypoxic period, rats received a daily sc injection of either saline or ghrelin (150 μg/kg). Subsequently, heart and lung samples were collected for morphological, histological, and molecular analyses. CH significantly elevated PAP in saline-treated rats, increased wall thickness of peripheral pulmonary arteries, and, consequently, induced right ventricular hypertrophy. In these rats, CH also led to the overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA within the lung. Exogenous ghrelin administration attenuated the CH-induced overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA. Consequently, ghrelin significantly attenuated the development of pulmonary arterial hypertension, pulmonary vascular remodeling, and right ventricular hypertrophy. These results demonstrate the therapeutic benefits of ghrelin for impeding the pathogenesis of pulmonary hypertension and right ventricular hypertrophy, particularly in subjects prone to CH (e.g. pulmonary disorders).
Learning Resource Type Article
Publisher Date 2008-01-01
Journal Endocrinology
Volume Number 149
Issue Number 1