Access Restriction

Author Carmona, Josep ♦ Cortadella, Jordi ♦ Takada, Yousuke ♦ Peper, Ferdinand
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2008
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Nanocomputing ♦ Cellular array ♦ Model checking ♦ Symbolic techniques
Abstract Nanometer-scale structures suitable for computing have been investigated by several research groups in recent years. A common feature of these structures is their dynamic evolution through cascaded local interactions embedded on a discrete grid. Finding configurations capable of conducting computations is a task that often requires tedious experiments in laboratories. Formal methods—though used extensively for the specification and verification of software and hardware computing systems—are virtually unexplored with respect to computational structures at atomic scales. This paper presents a systematic approach toward the application of formal methods in this context, using techniques like abstraction, model-checking, and symbolic representations of states to explore and discover computational structures. The proposed techniques are applied to a system of CO molecules on a grid of Copper atoms, resulting in the design of a complete library of combinational logic gates based on this molecular system. The techniques are also applied on (more general) systems of cellular automata that employ an asynchronous mode of timing. The use of formal methods may narrow the gap between Physical Chemistry and Computer Science, allowing the description of interactions of nanometer scale systems on a level of abstraction suitable to devise computing devices.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2008-04-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 4
Issue Number 2
Page Count 27
Starting Page 1
Ending Page 27

Open content in new tab

   Open content in new tab
Source: ACM Digital Library