Thumbnail
Access Restriction
Open

Author Hosokawa, Tatsuzo ♦ Goto, Kazuhiro ♦ Ohuchi, Mikio ♦ Kaneda, Teruo
Sponsorship (US)
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Publisher The American Physical Society
Language English
Subject Keyword PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ♦ AMPLITUDES ♦ ELECTRODES ♦ ELECTRONS ♦ GLOW DISCHARGES ♦ INSTABILITY ♦ OVERVOLTAGE ♦ PHOTONS ♦ PHYSICS ♦ PRODUCTION ♦ REMOVAL ♦ SHAPE ♦ TRANSIENTS
Abstract The prebreakdown phenomena and the formation process of the glow discharge in a low-pressure Ar gas were investigated under a uniform field gap. Prebreakdown phenomena were observed for 0.5Torrcm{le}pd{le}2Torrcm (where p is pressure, d the gap distance) in Ar gas under conditions of a slowly increasing voltage. It was observed that the prebreakdown phenomena formed pulse discharges up to the transition to the glow discharge. The amplitudes of the photon and current pulses due to the pulse discharge increased with time, and then decreased as soon as the transition to a steady glow discharge occurred. When the overvoltage or external series resistance was increased, the pulse amplitudes increased with the applied voltage and decreased with the resistance. The characteristics of the prebreakdown phenomena were changed by the shape of the electrodes. The formation mechanism of the glow discharge can be qualitatively explained by that of the streamer in a high-pressure discharge. The transient glow discharge was observed, and its duration increased with an increase in resistance. The instability of the glow discharge was controlled by three factors, namely, Kaufmann{close_quote}s criterion, the Child{endash}Langmuir law, and the density balance between the production and removal rates of electrons. {copyright} 2001 American Institute of Physics.
ISSN 00218979
Educational Use Research
Learning Resource Type Article
Publisher Date 2001-06-01
Publisher Place United States
Journal Journal of Applied Physics
Volume Number 89
Issue Number 11


Open content in new tab

   Open content in new tab