Thumbnail
Access Restriction
Subscribed

Author Kong, Fanxin ♦ Liu, Xue
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Power management ♦ Cost minimization ♦ Datacenter ♦ Dynamic pricing ♦ Emission ♦ Green energy ♦ Renewable energy
Abstract Megawatt-scale datacenters have emerged to meet the increasing demand for IT applications and services. The hunger for power brings large electricity bills to datacenter operators and causes significant impacts to the environment. To reduce costs and environmental impacts, modern datacenters, such as those of Google and Apple, are beginning to integrate renewable or green energy sources into their power supply. This article investigates the green-energy-aware power management problem for these datacenters and surveys and classifies works that explicitly consider renewable energy and/or carbon emission. Our aim is to give a full view of this problem. Hence, we first provide some basic knowledge on datacenters (including datacenter components, power infrastructure, power load estimation, and energy sources' operations), the electrical grid (including dynamic pricing, power outages, and emission factor), and the carbon market (including cap-and-trade and carbon tax). Then, we categorize existing research works according to their basic approaches used, including workload scheduling, virtual machine management, and energy capacity planning. Each category's discussion includes the description of the shared core idea, qualitative analysis, and quantitative analysis among works of this category.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-11-12
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 47
Issue Number 2
Page Count 38
Starting Page 1
Ending Page 38


Open content in new tab

   Open content in new tab
Source: ACM Digital Library