Access Restriction

Author Panwar, Shivendra S. ♦ Towsley, Don ♦ Wolf, Jack K.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©1988
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract Many problems can be modeled as single-server queues with impatient customers. An example is that of the transmission of voice packets over a packet-switched network. If the voice packets do not reach their destination within a certain time interval of their transmission, they are useless to the receiver and considered lost. It is therefore desirable to schedule the customers such that the fraction of customers served within their respective deadlines is maximized. For this measure of performance, it is shown that the shortest time to extinction (STE) policy is optimal for a class of continuous and discrete time nonpreemptive M/G/1 queues that do not allow unforced idle times. When unforced idle times are allowed, the best policies belong to the class of shortest time to extinction with inserted idle time (STEI) policies. An STEI policy requires that the customer closest to his or her deadline be scheduled whenever it schedules a customer. It also has the choice of inserting idle times while the queue is nonempty. It is also shown that the STE policy is optimal for the discrete time G/D/1 queue where all customers receive one unit of service. The paper concludes with a comparison of the expected customer loss using an STE policy with that of the first-come, first-served (FCFS) scheduling policy for one specific queue.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1988-10-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 35
Issue Number 4
Page Count 13
Starting Page 832
Ending Page 844

Open content in new tab

   Open content in new tab
Source: ACM Digital Library