Access Restriction

Author Crump, Kenny S.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©1976
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract A method is presented for numerically inverting a Laplace transform that requires, in addition to the transform function itself, only sine, cosine, and exponential functions. The method is conceptually much like the method of Dubner and Abate, which approximates the inverse function by means of a Fourier cosine series. The method presented here, however, differs from theirs in two important respects. First of all, the Fourier series contains additional terms involving the sine function selected such that the error in the approximation is less than that of Dubner and Abate and such that the Fourier series approximates the inverse function on an interval of twice the length of the corresponding interval in Dubner and Abate's method. Second, there is incorporated into the method in this paper a transformation of the approximating series into one that converges very rapidly. In test problems using the method it has routinely been possible to evaluate inverse transforms with considerable accuracy over a wide range of values of the independent variable using a relatively few determinations of the Laplace transform itself.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1976-01-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 23
Issue Number 1
Page Count 8
Starting Page 89
Ending Page 96

Open content in new tab

   Open content in new tab
Source: ACM Digital Library