Thumbnail
Access Restriction
Open

Author Hudait, M. K. ♦ Krupanidhi, S. B.
Sponsorship (US)
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Publisher The American Physical Society
Language English
Subject Keyword CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ♦ COMPRESSION ♦ EPITAXY ♦ PHOTOLUMINESCENCE ♦ PHYSICS ♦ SCANNING ELECTRON MICROSCOPY ♦ SUBSTRATES ♦ TRANSMISSION ELECTRON MICROSCOPY ♦ X-RAY DIFFRACTION
Abstract The self-annihilation of antiphase boundaries (APBs) in GaAs epitaxial layers grown by low-pressure metal-organic vapor-phase epitaxy on Ge substrates is studied by several characterization techniques. Cross-sectional transmission electron microscopy shows that antiphase domain free GaAs growth on Ge was possible due to the proper selection of the growth parameters. The antiphase boundaries annihilate with each other after a thick 3 {mu}m layer of GaAs growth on a Ge substrate as observed by scanning electron microscopy studies. Double crystal x-ray diffraction data shows a slight compression of GaAs on Ge, and the full width at half maximum decreases with increasing growth temperatures. This confirms that the APBs annihilate inside the GaAs epitaxial films. Low temperature photoluminescence measurements confirm the self-annihilation of the APBs at low temperature growth and the generation of APBs at higher growth temperatures. {copyright} 2001 American Institute of Physics.
ISSN 00218979
Educational Use Research
Learning Resource Type Article
Publisher Date 2001-06-01
Publisher Place United States
Journal Journal of Applied Physics
Volume Number 89
Issue Number 11


Open content in new tab

   Open content in new tab