Thumbnail
Access Restriction
Open

Author Das, B. ♦ Reddy, M. V. ♦ Chowdari, B. V. R.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword MATERIALS SCIENCE ♦ NANOSCIENCE AND NANOTECHNOLOGY ♦ CAPACITY ♦ CARBON NANOTUBES ♦ COBALT OXIDES ♦ ELECTROCHEMISTRY ♦ ENERGY STORAGE ♦ LITHIUM ION BATTERIES ♦ NANOCOMPOSITES ♦ NANOPARTICLES ♦ PARTICLE SIZE ♦ PERFORMANCE ♦ SYNTHESIS ♦ TRANSMISSION ELECTRON MICROSCOPY ♦ VOLTAMETRY ♦ X-RAY DIFFRACTION
Abstract Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.
ISSN 00255408
Educational Use Research
Learning Resource Type Article
Publisher Date 2016-02-15
Publisher Place United States
Journal Materials Research Bulletin
Volume Number 74


Open content in new tab

   Open content in new tab