Access Restriction

Author Eichinohe, Noritaka
Source Directory of Open Access Journals (DOAJ)
Content type Text
Publisher Frontiers Media S.A.
File Format HTM / HTML
Date Created 2014-05-22
Copyright Year ©2012
Language English
Subject Domain (in LCC) RC321-571 ♦ QM1-695
Subject Keyword Neuropsychiatry ♦ Cortical modular organization ♦ Biological psychiatry ♦ Dendritic bundle ♦ Neurosciences ♦ Human anatomy ♦ Input and recipient matching ♦ Science ♦ Internal medicine ♦ Corticocortical ♦ Medicine ♦ Thalamocortical
Abstract Structures associated with the small scale module called minicolumn can be observed frequently in the cerebral cortex. However, the description of functional characteristics remains obscure. A significant confounding factor is the marked variability both in the definition of a minicolumn and in the diagnostic markers for identifying a minicolumn (see for review, Jones, 2000, DeFelipe et al., 2003; Rockland and Ichinohe, 2004). Within a minicolumn, cell columns are easily visualized by conventional Nissl staining. Dendritic bundles were first discovered with Golgi methods, but are more easily seen with MAP2-immunohistochemisty. Myelinated axon bundles can be seen by Tau-immunohistochemistry or myelin staining. Axon bundles of double bouquet cell can be seen by calbindin-immunohistochemistry. The spatial interrelationship among these morphological elements is more complex than expected and is neither clear nor unanimously agreed upon. In this review, I would like to focus first on the minicolumnar structure found in layers 1 and 2 of the rat granular retrosplenial cortex (GRS). This modular structure was first discovered as a combination of prominent apical dendritic bundles from layer 2 pyramidal neurons and spatially-matched thalamocortical patchy inputs (Wyss et al., 2000). Further examination showed more intricate components of this modular structure, which will be reviewed in this paper. Second, the postnatal development of this structure and potential molecular players for its formation will be reviewed. Thirdly, I will discuss how this modular organization is transformed in mutant rodents with a disorganized layer structure in the cerebral cortex (i.e., reeler mouse and Shaking Rat Kawasaki). Lastly, the potential significance of this type of module will be discussed.
ISSN 16625129
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG ♦ Career/Technical Study
Learning Resource Type Article
Publisher Date 2012-01-01
e-ISSN 16625129
Journal Frontiers in Neuroanatomy
Volume Number 5

Source: Directory of Open Access Journals (DOAJ)