Thumbnail
Access Restriction
Open

Author Ecanavier, Carmen ♦ Echandrasekaran, Lakshmi ♦ Ewang, Shuoguo
Source Directory of Open Access Journals (DOAJ)
Content type Text
Publisher Frontiers Media S.A.
File Format HTM / HTML
Date Created 2014-05-22
Copyright Year ©2013
Language English
Subject Domain (in LCC) RC321-571
Subject Keyword Neuropsychiatry ♦ Biological psychiatry ♦ Neurosciences ♦ Brain rhythms ♦ Internal medicine ♦ Synchronization ♦ Pulsatile coupling ♦ Medicine ♦ Phase locking ♦ Phase resetting ♦ Synchrony
Abstract A central problem in cortical processing including sensory binding and attentional gating is how neurons can synchronize their responses with zero or near-zero time lag. For a spontaneously firing neuron, an input from another neuron can delay or advance the next spike by different amounts depending upon the timing of the input relative to the previous spike. This information constitutes the phase response curve (PRC). We present a simple graphical method for determining the effect of PRC shape on synchronization tendencies and illustrate it using type 1 PRCs, which consist entirely of advances (delays) in response to excitation (inhibition). We obtained the following generic solutions for type 1 PRCs, which include the pulse coupled leaky integrate and fire model. For pairs with mutual excitation, exact synchrony can be stable for strong coupling because of the stabilizing effect of the causal limit region of the PRC in which an input triggers a spike immediately upon arrival. However, synchrony is unstable for short delays, because delayed inputs arrive during a refractory period and cannot trigger an immediate spike. Right skew destabilizes antiphase and enables modes with time lags that grow as the conduction delay is increased. Therefore, right skew favors near-synchrony at short conduction delays and a gradual transition between synchrony and antiphase for pairs coupled by mutual excitation. For pairs with mutual inhibition, zero time lag synchrony is stable for conduction delays ranging from zero to a substantial fraction of the period for pairs. However, for right skew there is a preferred antiphase mode at short delays. In contrast to mutual excitation, left skew destabilizes antiphase for mutual inhibition so that synchrony dominates at short delays as well. These pairwise synchronization tendencies constrain the synchronization properties of neurons embedded in larger networks.
ISSN 16625110
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG ♦ Career/Technical Study
Learning Resource Type Article
Publisher Date 2013-12-01
e-ISSN 16625110
Journal Frontiers in Neural Circuits
Volume Number 7


Source: Directory of Open Access Journals (DOAJ)