Thumbnail
Access Restriction
Subscribed

Author Parvez, Tanvir ♦ Mahmoud, Sabri A.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2013
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Arabic text recognition ♦ Handwriting recognition ♦ Classifiers ♦ Features ♦ Optical character recognition
Abstract Research in offline Arabic handwriting recognition has increased considerably in the past few years. This is evident from the numerous research results published recently in major journals and conferences in the area of handwriting recognition. Features and classifications techniques utilized in recent research work have diversified noticeably compared to the past. Moreover, more efforts have been diverted, in last few years, to construct different databases for Arabic handwriting recognition. This article provides a comprehensive survey of recent developments in Arabic handwriting recognition. The article starts with a summary of the characteristics of Arabic text, followed by a general model for an Arabic text recognition system. Then the used databases for Arabic text recognition are discussed. Research works on preprocessing phase, like text representation, baseline detection, line, word, character, and subcharacter segmentation algorithms, are presented. Different feature extraction techniques used in Arabic handwriting recognition are identified and discussed. Different classification approaches, like HMM, ANN, SVM, k-NN, syntactical methods, etc., are discussed in the context of Arabic handwriting recognition. Works on Arabic lexicon construction and spell checking are presented in the postprocessing phase. Several summary tables of published research work are provided for used Arabic text databases and reported results on Arabic character, word, numerals, and text recognition. These tables summarize the features, classifiers, data, and reported recognition accuracy for each technique. Finally, we discuss some future research directions in Arabic handwriting recognition.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-03-12
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 45
Issue Number 2
Page Count 35
Starting Page 1
Ending Page 35


Open content in new tab

   Open content in new tab
Source: ACM Digital Library