Thumbnail
Access Restriction
Subscribed

Author Chappet De Vangel, Benot ♦ Torres-huitzil, Cesar ♦ Girau, Bernard
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2015
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Dynamic neural fields ♦ FPGA ♦ Cellular automata ♦ Neuromorphic engineering ♦ Spiking neurons
Abstract Bio-inspired neural computation attracts a lot of attention as a possible solution for the future challenges in designing computational resources. Dynamic neural fields (DNF) provide cortically inspired models of neural populations to which computation can be applied for a wide variety of tasks, such as perception and sensorimotor control. DNFs are often derived from continuous neural field theory (CNFT). In spite of the parallel structure and regularity of CNFT models, few studies of hardware implementations have been carried out targeting embedded real-time processing. In this article, a hardware-friendly model adapted from the CNFT is introduced, namely the RSDNF model (randomly spiking dynamic neural fields). Thanks to their simplified 2D structure, RSDNFs achieve scalable parallel implementations on digital hardware while maintaining the behavioral properties of CNFT models. Spike-based computations within neurons in the field are introduced to reduce interneuron connection bandwidth. Additionally, local stochastic spike propagation ensures inhibition and excitation broadcast without a fully connected network. The behavioral soundness and robustness of the model in the presence of noise and distracters is fully validated through software and hardware. A field programmable gate array (FPGA) implementation shows how the RSDNF model ensures a level of density and scalability out of reach for previous hardware implementations of dynamic neural field models.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-04-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 11
Issue Number 4
Page Count 26
Starting Page 1
Ending Page 26


Open content in new tab

   Open content in new tab
Source: ACM Digital Library