Access Restriction

Author Zhang, Tiansheng ♦ Meng, Jie ♦ Coskun, Ayse K
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2015
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword 3D stacking ♦ Policy ♦ Cache resource pooling ♦ Energy efficiency ♦ Runtime policy
Abstract Resource pooling, where multiple architectural components are shared among cores, is a promising technique for improving system energy efficiency and reducing total chip area. 3D stacked multicore processors enable efficient pooling of cache resources owing to the short interconnect latency between vertically stacked layers. This article first introduces a 3D multicore architecture that provides poolable cache resources. We then propose a runtime management policy to improve energy efficiency in 3D systems by utilizing the flexible heterogeneity of cache resources. Our policy dynamically allocates jobs to cores on the 3D system while partitioning cache resources based on cache hungriness of the jobs. We investigate the impact of the proposed cache resource pooling architecture and management policy in 3D systems, both with and without on-chip DRAM. We evaluate the performance, energy efficiency, and thermal behavior for a wide range of workloads running on 3D systems. Experimental results demonstrate that the proposed architecture and policy reduce system energy-delay product (EDP) and energy-delay-area product (EDAP) by 18.8% and 36.1% on average, respectively, in comparison to 3D processors with static cache sizes.
Description Author Affiliation: Boston University, Boston, MA (Zhang, Tiansheng; Meng, Jie; Coskun, Ayse K)
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-09-02
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 12
Issue Number 2
Page Count 21
Starting Page 1
Ending Page 21

Open content in new tab

   Open content in new tab
Source: ACM Digital Library