Thumbnail
Access Restriction
Subscribed

Author Lenzen, Christoph ♦ Locher, Thomas ♦ Wattenhofer, Roger
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2010
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Bounded rates ♦ Global skew ♦ Gradient property ♦ Local skew ♦ Variable clock drifts ♦ Worst-case analysis
Abstract We present a novel clock synchronization algorithm and prove tight upper and lower bounds on the worst-case clock skew that may occur between any two participants in any given distributed system. More importantly, the worst-case clock skew between neighboring nodes is (asymptotically) at most a factor of two larger than the best possible bound. While previous results solely focused on the dependency of the skew bounds on the network diameter, we prove that our techniques are optimal also with respect to the maximum clock drift, the uncertainty in message delays, and the imposed bounds on the clock rates. The presented results all hold in a general model where both the clock drifts and the message delays may vary arbitrarily within pre-specified bounds. Furthermore, our algorithm exhibits a number of other highly desirable properties. First, the algorithm ensures that the clock values remain in an affine linear envelope of real time. A better worst-case bound on the accuracy with respect to real time cannot be achieved in the absence of an external timer. Second, the algorithm minimizes the number and size of messages that need to be exchanged in a given time period. Moreover, only a small number of bits must be stored locally for each neighbor. Finally, our algorithm can easily be adapted for a variety of other prominent synchronization models.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2010-02-08
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 57
Issue Number 2
Page Count 42
Starting Page 1
Ending Page 42


Open content in new tab

   Open content in new tab
Source: ACM Digital Library