Access Restriction

Author Zhang, Xin ♦ Yang, Yee-Hong ♦ Han, Zhiguang ♦ Wang, Hui ♦ Gao, Chao
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2013
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Object class detection ♦ Appearance model ♦ Categorization ♦ Evaluation ♦ Intra-class appearance variation ♦ Segmentation ♦ Social images
Abstract Object class detection, also known as category-level object detection, has become one of the most focused areas in computer vision in the new century. This article attempts to provide a comprehensive survey of the recent technical achievements in this area of research. More than 270 major publications are included in this survey covering different aspects of the research, which include: (i) problem description: key tasks and challenges; (ii) core techniques: appearance modeling, localization strategies, and supervised classification methods; (iii) evaluation issues: approaches, metrics, standard datasets, and state-of-the-art results; and (iv) new development: particularly new approaches and applications motivated by the recent boom of social images. Finally, in retrospect of what has been achieved so far, the survey also discusses what the future may hold for object class detection research.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-07-11
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 46
Issue Number 1
Page Count 53
Starting Page 1
Ending Page 53

Open content in new tab

   Open content in new tab
Source: ACM Digital Library