Thumbnail
Access Restriction
Open

Author Palaspagar, R. S. ♦ Gawande, A. B. ♦ Sonekar, R. P. ♦ Omanwar, S. K.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword MATERIALS SCIENCE ♦ CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ♦ ALUMINIUM COMPOUNDS ♦ BORATES ♦ COMBUSTION ♦ CONCENTRATION RATIO ♦ FIELD EMISSION ♦ FLUORESCENCE ♦ IRRADIATION ♦ LITHIUM COMPOUNDS ♦ OPTICAL PROPERTIES ♦ PHOSPHORS ♦ PHOTOLUMINESCENCE ♦ SAMARIUM IONS ♦ SCANNING ELECTRON MICROSCOPY ♦ SYNTHESIS ♦ TERBIUM IONS ♦ ULTRAVIOLET RADIATION ♦ X-RAY DIFFRACTION
Abstract Graphical abstract: - Highlights: • New LiAl{sub 7}B{sub 4}O{sub 17}:Tb{sup 3+}, Sm{sup 3+} phosphors were synthesized first time by solution combustion method. • The LiAl{sub 7}B{sub 4}O{sub 17}:Tb{sup 3+} emissions; 489, 544, 586 and 623 nm (λ{sub ex} = 234 nm). • Also for LiAl{sub 7}B{sub 4}O{sub 17}:Sm{sup 3+}; 564, 601 and 649 nm (λ{sub ex} = 403 nm). • Synthesized materials were characterized by powder XRD, FE-SEM. • Concentration quenching mechanism and critical transfer distance of Tb{sup 3+} and Sm{sup 3+} in the prepared sample has been investigated. - Abstract: Novel LiAl{sub 7}B{sub 4}O{sub 17} (LABO) phosphor activated with trivalent rare earth ions (RE = Tb, Sm) was synthesized by using solution combustion synthesis. The powder X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), photoluminescence (PL), critical transfer distance (R{sub c}) and quenching mechanism studies were employed to characterize the samples. Under ultraviolet irradiation of the LiAl{sub 7}B{sub 4}O{sub 17}: Tb{sup 3+}, Sm{sup 3+} phosphors exhibit the typical green ({sup 5}D{sub 4} → {sup 7}F{sub j} = 6, 5, 4 and 3) emission band of the Tb{sup 3+} ions, as well as an orange-red and red ({sup 4}G{sub 5/2} → {sup 6}H{sub J=5/2,} {sub 7/2,} {sub 9/2}) emission bands of the Sm{sup 3+} ions. These results suggest that Tb{sup 3+} and Sm{sup 3+} activated LABO phosphor could be promising in vision of the necessity for solid state lighting applications.
ISSN 00255408
Educational Use Research
Learning Resource Type Article
Publisher Date 2015-12-15
Publisher Place United States
Journal Materials Research Bulletin
Volume Number 72


Open content in new tab

   Open content in new tab