Thumbnail
Access Restriction
Open

Author Brandt, R. A. ♦ Wing-Chiu, N. ♦ Yeung, W.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ♦ YANG-MILLS THEORY ♦ FIELD EQUATIONS ♦ GAUGE INVARIANCE ♦ MATHEMATICAL OPERATORS ♦ QUANTUM FIELD THEORY ♦ RENORMALIZATION ♦ EQUATIONS ♦ FIELD THEORIES ♦ INVARIANCE PRINCIPLES ♦ High Energy Physics- Field Theory
Abstract We consider the finite local field equation -)(1+1/..cap alpha.. (1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/N(A/sup c/..nu..A/sup a/..mu..A/sub ..nu..//sup c/) +xxx+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) approx...sigma..M/sup c/ab..nu mu..lambda/sub c/'a'b'..nu..'..mu..'lambda' (xi) N(A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/')(x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms of products of the c-number Wilson coefficients and of operator products like A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) at separated points. Our result is -)(1+(1/..cap alpha..)(1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/lim/sub xiarrow-right0/) (lnxi)/sup -0.28/2b/(A/sup c/..nu.. (x+xi) A/sup a/..mu..(x) A/sub ..nu..//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ..nu../A/sup b//sub ..nu../(x)+xxx) +xxx)+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., where ..beta.. (g) =-bg/sup 3/, and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation.
Educational Use Research
Learning Resource Type Article
Publisher Date 1980-03-01
Publisher Department Department of Physics, New York University, 4 Washington Place, New York, New York, 10003 USA
Publisher Place United States
Journal J. Math. Phys.
Volume Number 21
Issue Number 3
Organization Department of Physics, New York University, 4 Washington Place, New York, New York, 10003 USA


Open content in new tab

   Open content in new tab