Thumbnail
Access Restriction
Open

Author Brandt, E. H.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword PHYSICS ♦ HIGH-TC SUPERCONDUCTORS ♦ MAGNETIC FLUX ♦ CURRENT DENSITY ♦ CREEP ♦ ANALYTICAL SOLUTION ♦ ELECTRIC FIELDS ♦ IV CHARACTERISTIC
Abstract The nonlinear and nonlocal diffusion equation for the relaxing current density {ital J}({ital r},{ital t}) in long superconductors of arbitrary cross section in a constant perpendicular magnetic field {ital B}{sub {ital a}} is solved exactly by separation of variables in the electric field {ital E}({ital r},{ital t})={ital f}({ital r}){ital g}({ital t}). This solution includes the limiting cases of longitudinal and transverse geometries and applies to the current-voltage laws {ital E}{proportional_to}{ital J}{sup {ital n}} ranging from Ohmic ({ital n}=1) to Bean-like ({ital n}{r_arrow}{infinity}) behavior. The electric field profile {ital f}({ital r}) weakly depends on {ital n} and becomes universal for {ital n} exceeding {approx_equal}5. At large times {ital t} one finds {ital E}{proportional_to}1/{ital t}{sup {ital n}/({ital n}{minus}1)} and {ital J}{proportional_to}1/{ital t}{sup 1/({ital n}{minus}1)} for {ital n}{approx_gt}1, and {ital E}{proportional_to}{ital J}{proportional_to}exp({minus}{ital t}/{tau}{sub 0}) for {ital n}=1. The contour lines of {ital E}({ital r},{ital t}) coincide with the field lines of {bold B}({bold r},{ital t}) in the remanent state {ital B}{sup {ital a}}=0. {copyright} {ital 1996 The American Physical Society.}
ISSN 00319007
Educational Use Research
Learning Resource Type Article
Publisher Date 1996-05-01
Publisher Place United States
Journal Physical Review Letters
Volume Number 76
Issue Number 21


Open content in new tab

   Open content in new tab