Thumbnail
Access Restriction
Open

Author Brink, Willem van den ♦ Emerenciana, Annette
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword APPLIED LIFE SCIENCES ♦ CARCINOGENS ♦ CARCINOMAS ♦ CHRONIC INTAKE ♦ DATA ANALYSIS ♦ DRUGS ♦ GLUCAGON ♦ HEALTH HAZARDS ♦ IN VITRO ♦ PROPOSALS ♦ RECEPTORS ♦ RODENTS ♦ SIMULATION ♦ STIMULATION ♦ THYROID
Abstract Increased incidence of C-cell carcinogenicity has been observed for glucagon-like-protein-1 receptor (GLP-1r) agonists in rodents. It is suggested that the duration of exposure is an indicator of carcinogenic potential in rodents of the different products on the market. Furthermore, the role of GLP-1-related mechanisms in the induction of C-cell carcinogenicity has gained increased attention by regulatory agencies. This study proposes an integrative pharmacokinetic/pharmacodynamic (PKPD) framework to identify explanatory factors and characterize differences in carcinogenic potential of the GLP-1r agonist products. PK models for four products (exenatide QW (once weekly), exenatide BID (twice daily), liraglutide and lixisenatide) were developed using nonlinear mixed effects modelling. Predicted exposure was subsequently linked to GLP-1r stimulation using in vitro GLP-1r potency data. A logistic regression model was then applied to exenatide QW and liraglutide data to assess the relationship between GLP-1r stimulation and thyroid C-cell hyperplasia incidence as pre-neoplastic predictor of a carcinogenic response. The model showed a significant association between predicted GLP-1r stimulation and C-cell hyperplasia after 2 years of treatment. The predictive performance of the model was evaluated using lixisenatide, for which hyperplasia data were accurately described during the validation step. The use of a model-based approach provided insight into the relationship between C-cell hyperplasia and GLP-1r stimulation for all four products, which is not possible with traditional data analysis methods. It can be concluded that both pharmacokinetics (exposure) and pharmacodynamics (potency for GLP-1r) factors determine C-cell hyperplasia incidence in rodents. Our work highlights the pharmacological basis for GLP-1r agonist-induced C-cell carcinogenicity. The concept is promising for application to other drug classes. - Highlights: • An integrative PKPD model is applied to study GLP-1r agonist carcinogenicity. • C-cell carcinogenicity is impacted by both pharmacokinetics and pharmacodynamics. • The relation of GLP-1r stimulation and C-cell hyperplasia appears drug-independent. • Understanding carcinogenic risk needs a pharmacological basis.
ISSN 0041008X
Educational Use Research
Learning Resource Type Article
Publisher Date 2017-04-01
Publisher Place United States
Journal Toxicology and Applied Pharmacology
Volume Number 320


Open content in new tab

   Open content in new tab