Thumbnail
Access Restriction
Subscribed

Author Zhan, Yong ♦ Sapatnekar, Sachin S.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2008
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Abstract With aggressive reductions in feature sizes and the integration of multiple functionalities on the same die, bottlenecks due to I/O pin limitations have become a critical issue in today's VLSI designs, especially for 3D IC technologies. To alleviate the pin limitation problem, a stacked-Vdd circuit paradigm has recently been proposed in the literature. However, for a circuit designed using this paradigm, a significant amount of power may be wasted if modules are not carefully assigned to different Vdd domains. In this article, we present a partition-based algorithm for efficiently assigning modules at the floorplanning level, so as to reuse currents between Vdd domains and minimize the power wasted during the operation of the circuit. Experimental results on both 3D and 2D ICs show that compared with assigning modules to different Vdd domains using enumeration and simulated annealing, our algorithm can generate circuits with competitive power and IR noise performance, while being orders of magnitude faster.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2008-11-07
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 4
Issue Number 4
Page Count 20
Starting Page 1
Ending Page 20


Open content in new tab

   Open content in new tab
Source: ACM Digital Library