Thumbnail
Access Restriction
Subscribed

Author Bahreini, Tayebeh ♦ Mohammadzadeh, Naser
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2015
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Quantum circuits ♦ Placement ♦ Quantum physical design ♦ Scheduling
Abstract Recent works on quantum physical design have pushed the scheduling and placement of quantum circuit into their prominent positions. In this article, a mixed integer nonlinear programming model is proposed for the placement and scheduling of quantum circuits in such a way that latency is minimized. The proposed model determines locations of gates and the sequence of operations. The proposed model is proved reducible to a quadratic assignment problem which is a well-known NP-complete combinatorial optimization problem. Since it is impossible to find the optimal solution of this NP-complete problem for large quantum circuits within a reasonable amount of time, a metaheuristic solution method is developed for the proposed model. Some experiments are conducted to evaluate the performance of the developed solution approach. Experimental results show that the proposed approach improves average latency by about 24.09% for the attempted benchmarks.
Description Author Affiliation: Shahed University, Tehran, Iran (Bahreini, Tayebeh; Mohammadzadeh, Naser)
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2015-09-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 12
Issue Number 3
Page Count 20
Starting Page 1
Ending Page 20


Open content in new tab

   Open content in new tab
Source: ACM Digital Library