Thumbnail
Access Restriction
Subscribed

Author Sakr, Sherif ♦ Liu, Anna ♦ Fayoumi, Ayman G.
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2013
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword MapReduce ♦ Big data ♦ Large-scale data processing
Abstract In the last two decades, the continuous increase of computational power has produced an overwhelming flow of data which has called for a paradigm shift in the computing architecture and large-scale data processing mechanisms. MapReduce is a simple and powerful programming model that enables easy development of scalable parallel applications to process vast amounts of data on large clusters of commodity machines. It isolates the application from the details of running a distributed program such as issues on data distribution, scheduling, and fault tolerance. However, the original implementation of the MapReduce framework had some limitations that have been tackled by many research efforts in several followup works after its introduction. This article provides a comprehensive survey for a $\textit{family}$ of approaches and mechanisms of large-scale data processing mechanisms that have been implemented based on the original idea of the MapReduce framework and are currently gaining a lot of momentum in both research and industrial communities. We also cover a set of introduced systems that have been implemented to provide declarative programming interfaces on top of the MapReduce framework. In addition, we review several large-scale data processing systems that resemble some of the ideas of the MapReduce framework for different purposes and application scenarios. Finally, we discuss some of the future research directions for implementing the next generation of MapReduce-like solutions.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-07-11
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 46
Issue Number 1
Page Count 44
Starting Page 1
Ending Page 44


Open content in new tab

   Open content in new tab
Source: ACM Digital Library