Thumbnail
Access Restriction
Open

Author Saini, J. ♦ Wong, T. ♦ St James, S. ♦ Stewart, R. ♦ Bloch, C. ♦ Traneus, E.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword APPLIED LIFE SCIENCES ♦ RADIATION PROTECTION AND DOSIMETRY ♦ ALGORITHMS ♦ BRAGG CURVE ♦ DEPTH DOSE DISTRIBUTIONS ♦ MONTE CARLO METHOD ♦ PROTON BEAMS ♦ RADIOTHERAPY ♦ SIMULATION
Abstract Purpose: Compare proton pencil beam scanning dose measurements to GATE/GEANT4 (GMC) and RayStation™ Monte Carlo (RMC) simulations. Methods: Proton pencil beam models of the IBA gantry at the Seattle Proton Therapy Center were developed in the GMC code system and a research build of the RMC. For RMC, a preliminary beam model that does not account for upstream halo was used. Depth dose and lateral profiles are compared for the RMC, GMC and a RayStation™ pencil beam dose (RPB) model for three spread out Bragg peaks (SOBPs) in homogenous water phantom. SOBP comparisons were also made among the three models for a phantom with a (i) 2 cm bone and a (ii) 0.5 cm titanium insert. Results: Measurements and GMC estimates of R80 range agree to within 1 mm, and the mean point-to-point dose difference is within 1.2% for all integrated depth dose (IDD) profiles. The dose differences at the peak are 1 to 2%. All of the simulated spot sigmas are within 0.15 mm of the measured values. For the three SOBPs considered, the maximum R80 deviation from measurement for GMC was −0.35 mm, RMC 0.5 mm, and RPB −0.1 mm. The minimum gamma pass using the 3%/3mm criterion for all the profiles was 94%. The dose comparison for heterogeneous inserts in low dose gradient regions showed dose differences greater than 10% at the distal edge of interface between RPB and GMC. The RMC showed improvement and agreed with GMC to within 7%. Conclusion: The RPB dosimetry show clinically significant differences (> 10%) from GMC and RMC estimates. The RMC algorithm is superior to the RPB dosimetry in heterogeneous media. We suspect modelling of the beam’s halo may be responsible for a portion of the remaining discrepancy and that RayStation will reduce this discrepancy as they finalize the release. Erik Traneus is employed as a Research Scientist at RaySearch Laboratories. The research build of the RayStation TPS used in the study was made available to the SCCA free of charge. RaySearch did not provide any monetary support other than a license to use the research build of the TPS.
ISSN 00942405
Educational Use Research
Learning Resource Type Article
Publisher Date 2016-06-15
Publisher Place United States
Journal Medical Physics
Volume Number 43
Issue Number 6


Open content in new tab

   Open content in new tab