Thumbnail
Access Restriction
Open

Author Chivall, David ♦ M'Boule, Daniela ♦ Sinke-Schoen, Daniëlle ♦ Sinninghe Damsté, Jaap S ♦ Schouten, Stefan ♦ van der Meer, Marcel T J
Source PANGAEA
Content type Text
Publisher PANGAEA
File Format TSV
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences
Subject Keyword Chemistry
Abstract The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, alpha alkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to ca. 35. alpha alkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85 <= R**2 <= 0.97; p < 0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone dD has the potential to be used as a salinity proxy in coastal areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of alpha alkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, alpha alkenones-water increased by 0.0019 per salinity unit (S 1), but was less sensitive at 0.0010 S 1 and 0.0008 S 1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa alpha alkenones-water increased by 0.0010 S 1 in the early stationary phase and by 0.0008 S 1 during the late stationary phase. Assuming the shift in sensitivity of alpha alkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of haptophytes will affect the sensitivity of the alkenone salinity proxy. The proxy is likely to be most sensitive to salinity when alkenones are produced in a state similar to exponential growth.
Description Note: 1613 data points
Part of series Supplement to: Chivall, D et al. (2014): The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae. Geochimica et Cosmochimica Acta, 140, 381-390, https://doi.org/10.1016/j.gca.2014.05.043
Educational Use Research
Learning Resource Type Data Set
Publisher Date 2014-05-05
Rights License https://creativecommons.org/licenses/by/3.0/


Open content in new tab

   Open content in new tab