Thumbnail
Access Restriction
Open

Author Chung, Tein-Yaw ♦ Chen, Yung-Mu ♦ Hsu, Chih-Hung
Source World Health Organization (WHO)-Global Index Medicus
Content type Text
Publisher Multidisciplinary Digital Publishing Institute
File Format HTM / HTML
Language English
Difficulty Level Medium
Subject Domain (in DDC) Technology ♦ Medicine & health
Abstract Positioning and tracking technologies can detect the location and the movement of mobile nodes (MNs), such as cellular phone, vehicular and mobile sensor, to predict potential handoffs. However, most motion detection mechanisms require additional hardware (e.g., GPS and directed antenna), costs (e.g., power consumption and monetary cost) and supply systems (e.g., network fingerprint server). This paper proposes a Momentum of Received Signal Strength (MRSS) based motion detection method and its application on handoff. MRSS uses the exponentially weighted moving average filter with multiple moving average window size to analyze the received radio signal. With MRSS, an MN can predict its motion state and make a handoff trigger at the right time without any assistance from positioning systems. Moreover, a novel motion state dependent MRSS scheme called Dynamic MRSS (DMRSS) algorithm is proposed to adjust the motion detection sensitivity. In our simulation, the MRSS- and DMRSS-based handoff algorithms can reduce the number of unnecessary handoffs up to 44% and save battery power up to 75%.
Description Author Affiliation: Chung TY ( Department of Computer Science & Engineering, Yuan Ze University, No. 135 Yuan-Tung Rd., Chung-Li, Taoyuan, 32003, Taiwan E-Mails: armor@netlab.cse.yzu.edu.tw (Y.-M.C.))
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Reading ♦ Research ♦ Self Learning
Interactivity Type Expositive
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-01-01
Publisher Place Switzerland
e-ISSN 14248220
Journal Sensors
Volume Number 9
Issue Number 7


Source: WHO-Global Index Medicus