Thumbnail
Access Restriction
Open

Author Pilla, Pierluigi ♦ Cusano, Andrea ♦ Cutolo, Antonello ♦ Giordano, Michele ♦ Mensitieri, Giuseppe ♦ Rizzo, Paola ♦ Sanguigno, Luigi ♦ Venditto, Vincenzo ♦ Guerra, Gaetano
Source World Health Organization (WHO)-Global Index Medicus
Content type Text
Publisher Multidisciplinary Digital Publishing Institute
File Format HTM / HTML
Language English
Difficulty Level Medium
Subject Domain (in DDC) Technology ♦ Medicine & health
Abstract Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10-15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds.
Description Author Affiliation: Pilla P ( Optoelectronic Division, Engineering Department, University of Sannio, Benevento 82100, Italy)
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Reading ♦ Research ♦ Self Learning
Interactivity Type Expositive
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-01-01
Publisher Place Switzerland
e-ISSN 14248220
Journal Sensors
Volume Number 9
Issue Number 12


Source: WHO-Global Index Medicus