Thumbnail
Access Restriction
Open

Author Yun, Yeo-Heung ♦ Bhattacharya, Amit ♦ Watts, Nelson B. ♦ Schulz, Mark J.
Source World Health Organization (WHO)-Global Index Medicus
Content type Text
Publisher Multidisciplinary Digital Publishing Institute
File Format HTM / HTML
Language English
Difficulty Level Medium
Subject Domain (in DDC) Technology ♦ Medicine & health
Abstract This paper describes the development of a biosensor based on label-free immunosensing for the detection of the C-terminal telopeptide bone turnover marker from type-1 collagen. A self-assembled monolayer (SAM) of dithiodipropionic acid was deposited on a gold electrode. Then streptavidin and biotinylated anti-human C-terminal telopeptide antibody were successively conjugated on the self-assembled monolayer. Electrochemical impedance measurements were made to characterize each step of the SAM/streptavidin/biotinylated antibody binding. Subsequently, electrochemical impedance was measured with different concentrations of C-teminal telopeptide. A detection limit of 50 ng/mL and a dynamic range up to 3 µg/mL were achieved. To our knowledge, this is the first attempt to develop a label-free immunosensor based on electrochemical impedance with DC bias for detection of bone-related degradation and rebuilding products. The electronic biosensor might eventually be used for quantitative point-of-care screening of bone health. It is hoped that analysis of bone turnover markers can indicate the beginning of bone diseases such as osteoarthritis and osteoporosis so that treatment might start early when it is most effective.
Description Author Affiliation: Yun YH ( Nanoworld and Smart Materials and Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, OH 45221, USA)
Educational Role Student ♦ Teacher
Age Range above 22 year
Educational Use Reading ♦ Research ♦ Self Learning
Interactivity Type Expositive
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2009-01-01
Publisher Place Switzerland
e-ISSN 14248220
Journal Sensors
Volume Number 9
Issue Number 10


Source: WHO-Global Index Medicus