Thumbnail
Access Restriction
Subscribed

Author Wu, Chengwen ♦ Zhang, Guangyan ♦ Li, Keqin
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2016
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Computer architecture ♦ I/O performance ♦ Energy consumption ♦ Phase-change memory ♦ System software ♦ Write lifetime
Abstract With dramatic growth of data and rapid enhancement of computing powers, data accesses become the bottleneck restricting overall performance of a computer system. Emerging phase-change memory (PCM) is byte-addressable like DRAM, persistent like hard disks and Flash SSD, and about four orders of magnitude faster than hard disks or Flash SSDs for typical file system I/Os. The maturity of PCM from research to production provides a new opportunity for improving the I/O performance of a system. However, PCM also has some weaknesses, for example, long write latency, limited write endurance, and high active energy. Existing processor cache systems, main memory systems, and online storage systems are unable to leverage the advantages of PCM, and/or to mitigate PCM’s drawbacks. The reason behind this incompetence is that they are designed and optimized for SRAM, DRAM memory, and hard drives, respectively, instead of PCM memory. There have been some efforts concentrating on rethinking computer architectures and software systems for PCM. This article presents a detailed survey and review of the areas of computer architecture and software systems that are oriented to PCM devices. First, we identify key technical challenges that need to be addressed before this memory technology can be leveraged, in the form of processor cache, main memory, and online storage, to build high-performance computer systems. Second, we examine various designs of computer architectures and software systems that are PCM aware. Finally, we obtain several helpful observations and propose a few suggestions on how to leverage PCM to optimize the performance of a computer system.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2016-05-12
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 12
Issue Number 4
Page Count 40
Starting Page 1
Ending Page 40


Open content in new tab

   Open content in new tab
Source: ACM Digital Library