Access Restriction

Author Chakrabarty, Krishnendu ♦ Zeng, Jun
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2005
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Microfluidics ♦ Biochips ♦ Design automation
Abstract Advances in microfluidics technology offer exciting possibilities in the realm of enzymatic analysis, DNA analysis, proteomic analysis involving proteins and peptides, immunoassays, implantable drug delivery devices, and environmental toxicity monitoring. Microfluidics-based biochips are therefore gaining popularity for clinical diagnostics and other laboratory procedures involving molecular biology. As more bioassays are executed concurrently on a biochip, system integration and design complexity are expected to increase dramatically. This paper presents different actuation mechanisms for microfluidics-based biochips, as well as associated design automation trends and challenges. The underlying physical principles of eletrokinetics, electrohydrodynamics, and thermo-capillarity are discussed. Next, the paper presents an overview of an integrated system-level design methodology that attempts to address key issues in the modeling, simulation, synthesis, testing and reconfiguration of digital microfluidics-based biochips. The top-down design automation will facilitate the integration of fluidic components with microelectronic component in next-generation system-on-chip designs.
ISSN 15504832
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2005-10-01
Publisher Place New York
e-ISSN 15504840
Journal ACM Journal on Emerging Technologies in Computing Systems (JETC)
Volume Number 1
Issue Number 3
Page Count 38
Starting Page 186
Ending Page 223

Open content in new tab

   Open content in new tab
Source: ACM Digital Library