Thumbnail
Access Restriction
Subscribed

Author Danos, Vincent ♦ Kashefi, Elham ♦ Panangaden, Prakash
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2007
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Models for quantum computing ♦ Measurement-based quantum computing ♦ Normalization ♦ Quantum programming languages ♦ Teleportation-based quantum computing ♦ Term rewriting
Abstract Measurement-based quantum computation has emerged from the physics community as a new approach to quantum computation where the notion of measurement is the main driving force of computation. This is in contrast with the more traditional circuit model that is based on unitary operations. Among measurement-based quantum computation methods, the recently introduced one-way quantum computer [Raussendorf and Briegel 2001] stands out as fundamental. We develop a rigorous mathematical model underlying the one-way quantum computer and present a concrete syntax and operational semantics for programs, which we call $\textit{patterns},$ and an algebra of these patterns derived from a denotational semantics. More importantly, we present a calculus for reasoning locally and compositionally about these patterns. We present a rewrite theory and prove a general standardization theorem which allows all patterns to be put in a semantically equivalent standard form. Standardization has far-reaching consequences: a new physical architecture based on performing all the entanglement in the beginning, parallelization by exposing the dependency structure of measurements and expressiveness theorems. Furthermore we formalize several other measurement-based models, for example, Teleportation, Phase and Pauli models and present compositional embeddings of them into and from the one-way model. This allows us to transfer all the theory we develop for the one-way model to these models. This shows that the framework we have developed has a general impact on measurement-based computation and is not just particular to the one-way quantum computer.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2007-04-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 54
Issue Number 2


Open content in new tab

   Open content in new tab
Source: ACM Digital Library