Thumbnail
Access Restriction
Subscribed

Author Görschen, Eckart ♦ Dunaeva, Marina ♦ Hause, Bettina ♦ Reeh, Ingeborg ♦ Wasternack, Claus ♦ Parthier, Ben
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©1997
Language English
Subject Domain (in DDC) Social sciences ♦ Sociology & anthropology
Abstract In this paper we report the in-planta activity of the ribosome-inactivating protein JIP60, a 60-kDa jasmonate-induced protein from barley (Hordeum vulgare L.), in transgenic tobacco (Nicotiana tabacum L.) plants. All plants expressing the complete JIP60 cDNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited conspicuous and similar phenotypic alterations, such as slower growth, shorter internodes, lanceolate leaves, reduced root development, and premature senescence of leaves. Microscopic inspection of developing leaves showed a loss of residual meristems and higher degree of vacuolation of mesophyll cells as compared to the wild type. When probed with an antiserum which was immunoreactive against both the N- and the C-terminal half of JIP60, a polypeptide with a molecular mass of about 30 kDa, most probably a processed JIP60 product, could be detected. Phenotypic alterations could be correlated with the differences in the detectable amount of the JIP60 mRNA and processed JIP60 protein. The protein biosynthesis of the transformants was characterized by an increased polysome/monosome ratio but a decreased in-vivo translation activity. These findings suggest that JIP60 perturbs the translation machinery in planta. An immunohistological analysis using the JIP60 antiserum indicated that the immunoreactive polypeptide(s) are located mainly in the nucleus of transgenic tobacco leaf cells and to a minor extent in the cytoplasm.
ISSN 00320935
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1997-07-17
Publisher Place Berlin/Heidelberg
e-ISSN 14322048
Journal Planta
Volume Number 202
Issue Number 4
Page Count 9
Starting Page 470
Ending Page 478


Open content in new tab

   Open content in new tab
Source: SpringerLink