Access Restriction

Author McDermott, William J. ♦ Van Emmerik, Richard E. A. ♦ Hamill, Joseph
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2003
Language English
Subject Domain (in DDC) Social sciences ♦ Sociology & anthropology
Abstract It has been suggested that stronger coupling between locomotory and breathing rhythms may occur as a result of training in the particular movement pattern and also may reduce the perceived workload or metabolic cost of the movement. Research findings on human locomotor–respiratory coordination are equivocal, due in part to the fact that assessment techniques range in sensitivity to important aspects of coordination (e.g. temporal ordering of patterns, half-integer couplings and changes in frequency and phase coupling). An additional aspect that has not received much attention is the adaptability of this coordination to changes in task constraints. The current study investigated the effect of running training on the locomotor-respiratory coordination and the adaptive strategies observed across a wide range of walking and running speeds. Locomotor-respiratory coordination was evaluated by the strength and variability of both frequency and phase coupling patterns that subjects displayed within and across the speed conditions. Male subjects (five runners, five non-runners) locomoted at seven different treadmill speeds. Group results indicated no differences between runners and non-runners with respect to breathing parameters, stride parameters, as well as the strength and variability of the coupling at each speed. Individual results, however, showed that grouping subjects masks large individual differences and strategies across speeds. Coupling strategies indicated that runners show more stable dominant couplings across locomotory speeds than non-runners do. These findings suggest that running training does not change the strength of locomotor–respiratory coupling but rather how these systems adapt to changing speeds.
ISSN 14396319
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2003-04-24
Publisher Place Berlin/Heidelberg
e-ISSN 14396327
Journal European Journal of Applied Physiology
Volume Number 89
Issue Number 5
Page Count 10
Starting Page 435
Ending Page 444

Open content in new tab

   Open content in new tab
Source: SpringerLink