Thumbnail
Access Restriction
Subscribed

Author Pinho, Ricardo A. ♦ Silva, Lucia D. ♦ Pinho, Cleber A. ♦ Daufenbach, Juliana F. ♦ Rezin, Gislaine T. ♦ Silva, Lucia A. ♦ Streck, Emílio L. ♦ Souza, Claudio T.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2011
Language English
Subject Domain (in DDC) Technology ♦ Medicine & health
Subject Keyword Physical exercise ♦ Effort intensity ♦ Skeletal muscle ♦ Electron transport chain ♦ Occupational Medicine/Industrial Medicine ♦ Human Physiology ♦ Sports Medicine
Abstract The present study investigates the effects of incremental exercise test on muscular oxidative metabolism. Thirty-six 2-month-old male Wistar rats were distributed in seven groups that performed exercise at different levels: first level (control), second level (0.6 km/h), third level (0.6 and 0.8 km/h), fourth level (0.6, 0.8 and 1.0 km/h), fifth level (0.6, 0.8, 1.0 and 1.2 km/h), sixth level (0.6, 0.8, 1.0, 1.2 and 1.4 km/h), and seventh level (0.6, 0.8, 1.0, 1.2, 1.4 and 1.6 km/h). At the end of the exercise challenge, level of blood lactate (BL), glycogen content (MG), creatine kinase (CK), complexes (CI, CII, CIII, CIV), oxidative damage, succinate dehydrogenase (SDH), cytochrome c oxidase as well as antioxidant enzymes (SOD and CAT) expression were measured. The speed of 1.0 km/h increased BL level, while 1.2 km/h decreased MG and increased serum CK. Increased SDH expression was observed after intensity levels 6 and 7, and cytochrome c oxidase expression increased after levels 5, 6 and 7, in comparison with lower intensity levels, ETC enzyme activities increased when exercise was applied at intensities of 0.8 km/h (CI), 1.0 km/h (CII and CIII), and 1.2 km/h (CIV). The increase in SOD expression did not occur as observed for superoxide production, except for rats that underwent exercise at level 7, but CAT expression increased significantly in all levels, starting from level 3. Our results show interesting alterations in the muscular metabolism parameters, and suggest a differential response of muscle oxidative metabolism when intense exercise is applied at different speeds.
ISSN 14396319
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2011-05-15
Publisher Place Berlin/Heidelberg
e-ISSN 14396327
Journal European Journal of Applied Physiology
Volume Number 112
Issue Number 1
Page Count 10
Starting Page 387
Ending Page 396


Open content in new tab

   Open content in new tab
Source: SpringerLink