Thumbnail
Access Restriction
Subscribed

Author Kalliokoski, Kari K. ♦ Kemppainen, Jukka ♦ Larmola, Kirsti ♦ Takala, Teemu O. ♦ Peltoniemi, Pauliina ♦ Oksanen, Airi ♦ Ruotsalainen, Ulla ♦ Cobelli, Claudio ♦ Knuuti, Juhani ♦ Nuutila, Pirjo
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2000
Language English
Subject Domain (in DDC) Social sciences ♦ Sociology & anthropology
Abstract Blood flow is the main regulator of skeletal muscle's oxygen supply, and several studies have shown heterogeneous blood flow among and within muscles. However, it remains unclear whether exercise changes the heterogeneity of flow in exercising human skeletal muscle. Muscle blood flow and spatial flow heterogeneity were measured simultaneously in exercising and in the contralateral resting quadriceps femoris (QF) muscle in eight healthy men using H15 2O and positron emission tomography. The relative dispersion (standard deviation/mean) of blood flow was calculated as an index of spatial flow heterogeneity. Average muscle blood flow in QF was 29 (10) ml · (kg muscle)−1 · min−1 at rest and 146 (54) ml · (kg muscle)−1 · min−1 during exercise (P=0.008 for the difference). Blood flow was significantly (P < 0.001) higher in the vastus medialis and the vastus intermedius than in the vastus lateralis and the rectus femoris, both in the resting and the exercising legs. Flow was more homogeneous in the exercising vastus medialis and more heterogeneous (P < 0.001) in the exercising vastus lateralis (P=0.01) than in the resting contralateral muscle. Flow was more homogeneous (P < 0.001) in those exercising muscles in which flow was highest (vastus intermedius and vastus medialis) as compared to muscles with the lowest flow (vastus lateralis and the rectus femoris). These data demonstrate that muscle blood flow varies among different muscles in humans both at rest and during exercise. Muscle perfusion is spatially heterogeneous at rest and during exercise, but responses to exercise are different depending on the muscle.
ISSN 14396319
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2000-11-14
Publisher Place Berlin/Heidelberg
e-ISSN 14396327
Journal European Journal of Applied Physiology
Volume Number 83
Issue Number 4
Page Count 7
Starting Page 395
Ending Page 401


Open content in new tab

   Open content in new tab
Source: SpringerLink