Thumbnail
Access Restriction
Subscribed

Author Scher, Julia L. ♦ Holbrook, N. Michele ♦ Silk, Wendy K.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2001
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Life sciences; biology
Subject Keyword Plant Sciences ♦ Agriculture ♦ Ecology ♦ Forestry
Abstract Using the TWIFOR, an electronic device for continuous, in vivo measurement of the forces exerted by twining vines, we examined the forces generated by vines growing on cylindrical poles of slender (6.35 mm) and thicker (19.05 mm) diameter. In stems of Ipomoea purpurea (L.) Roth, magnitudes of twining force (axial tensions) were, on average, less at a particular time and location on the more slender poles; while twining loads (normal force per unit length of vine) were much greater on the slender poles because of the greater curvature of the vines. Thus, the geometry of the helix formed by the vine on the pole affects the ability of the vine to maintain a frictional interaction with its support. In addition, the plant-to-plant variation in twining force was twice as great on the thicker support poles. Metaxylem and fibers developed closer to the plant apex in vines on the slender poles. On the thicker poles, a significant fraction of the maximum twining force developed during the establishment of the first gyre, before fibers were lignified, indicating that primary growth can be sufficient to establish high twining forces. On the slender poles, however, twining force increased with developmental stage until the gyre was at least 1.5 m from the apex. Thus, twining force can increase after cessation of primary growth. No simple relationship was found between the site of fiber differentiation and twining force.
ISSN 00320935
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2014-02-15
Publisher Place Berlin/Heidelberg
e-ISSN 14322048
Journal Planta
Volume Number 213
Issue Number 2
Page Count 7
Starting Page 192
Ending Page 198


Open content in new tab

   Open content in new tab
Source: SpringerLink