Access Restriction

Author Miskell, Julie Ann ♦ Parmenter, Graeme ♦ Eaton Rye, Julian J.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©2002
Language English
Subject Domain (in DDC) Social sciences ♦ Sociology & anthropology
Abstract To identify physiological processes that might limit photosynthesis in Panax quinquefolius L. (American ginseng) a comparison has been made with Panax ginseng C.A. Meyer (Korean ginseng), Pisum sativum L. (pea) and Spinacia oleracea L. (spinach). The quantum yield of oxygen evolution in intact leaves and isolated thylakoid membranes was found to be smaller in ginseng than in pea or spinach. However, the number of photosystem II (PSII) centers on a chlorophyll basis was found to be similar in all species. This suggests that ginseng thylakoid membranes possess relatively more inactive PSII centers than thylakoids of pea and spinach when grown under similar conditions. Unexpectedly, whole-chain electron transport from water to methyl viologen, and partial photosystem I reactions, demonstrated that electron transport rates to methyl viologen were anomalously low in P. quinquefolius and P. ginseng. Additionally, at elevated light intensities, intact leaves of P. quinquefolius were more susceptible to lipid peroxidation than pea leaves. In plants grown at a light intensity of 80 µmol photons m–2 s–1 the levels of fructose and starch were higher in both ginseng species than in pea or spinach. Significantly, the level of starch in P. quinquefolius was relatively constant throughout the entire 12 h/12 h light/dark cycle and remained high after an extended dark time of 48 h. In addition, P. quinquefolius had lower activities of α-amylase and β-amylase than P. ginseng, pea and Arabidopsis thaliana (L.) Heynh. The significance of the elevated levels of leaf starch in P. quinquefolius remains to be determined. However, the susceptibility of P. quinquefolius to photoinhibition may arise as a consequence of a reduced fraction of active PSII centers. This may result in the normal dissipative mechanisms in these plants becoming saturated at elevated, but moderate, light intensities.
ISSN 00320935
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2002-08-21
Publisher Place Berlin/Heidelberg
e-ISSN 14322048
Journal Planta
Volume Number 215
Issue Number 6
Page Count 11
Starting Page 969
Ending Page 979

Open content in new tab

   Open content in new tab
Source: SpringerLink