Access Restriction

Author Schubbert, R. ♦ Hohlweg, U. ♦ Renz, D. ♦ Doerfler, W.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©1998
Language English
Subject Domain (in DDC) Social sciences ♦ Sociology & anthropology
Abstract We have previously shown that, when administered orally to mice, bacteriophage M13 DNA, as a paradigm foreign DNA without homology to the mouse genome, can persist in fragmented form in the gastrointestinal tract, penetrate the intestinal wall, and reach the nuclei of leukocytes, spleen and liver cells. Similar results were obtained when a plasmid containing the gene for the green fluorescent protein (pEGFP-C1) was fed to mice. In spleen, the foreign DNA was detected in covalent linkage to DNA with a high degree of homology to mouse genes, perhaps pseudogenes, or to authentic E. coli DNA. We have now extended these studies to the offspring of mice that were fed regularly during pregnancy with a daily dose of 50 g of M13 or pEGFP-C1 DNA. Using the polymerase chain reaction (PCR) or the fluorescent in situ hybridization (FISH) method, foreign DNA, orally ingested by pregnant mice, can be discovered in various organs of fetuses and of newborn animals. The M13 DNA fragments have a length of about 830 bp. In various organs of the mouse fetus, clusters of cells contain foreign DNA as revealed by FISH. The foreign DNA is invariably located in the nuclei. We have never found all cells of the fetus to be transgenic for the foreign DNA. This distribution pattern argues for a transplacental pathway rather than for germline transmission which might be expected only after long-time feeding regimens. In rare cells of three different fetuses, whose mothers have been fed with M13 DNA during gestation, the foreign DNA was detected by FISH in association with both chromatids. Is maternally ingested foreign DNA a potential mutagen for the developing fetus?
ISSN 00268925
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1998-10-15
Publisher Place Berlin/Heidelberg
e-ISSN 14321874
Journal Molecular and General Genetics MGG
Volume Number 259
Issue Number 6
Page Count 8
Starting Page 569
Ending Page 576

Open content in new tab

   Open content in new tab
Source: SpringerLink