Thumbnail
Access Restriction
Open

Author Hirose, T. ♦ Arimura, H. ♦ Oga, S. ♦ Sasaki, T. ♦ Shibayama, Y. ♦ Fukunaga, J. ♦ Umezu, Y.
Source United States Department of Energy Office of Scientific and Technical Information
Content type Text
Language English
Subject Keyword APPLIED LIFE SCIENCES ♦ RADIATION PROTECTION AND DOSIMETRY ♦ COMPUTERIZED TOMOGRAPHY ♦ ERRORS ♦ HAZARDS ♦ NEOPLASMS ♦ PATIENTS ♦ PLANNING ♦ PROSTATE ♦ RADIOTHERAPY
Abstract Purpose: The purpose of this study was to investigate the impact of planning target volume (PTV) margins with taking into consideration clinical target volume (CTV) shape variations on treatment plans of intensity modulated radiation therapy (IMRT) for prostate cancer. Methods: The systematic errors and the random errors for patient setup errors in right-left (RL), anterior-posterior (AP), and superior-inferior (SI) directions were obtained from data of 20 patients, and those for CTV shape variations were calculated from 10 patients, who were weekly scanned using cone beam computed tomography (CBCT). The setup error was defined as the difference in prostate centers between planning CT and CBCT images after bone-based registrations. CTV shape variations of high, intermediate and low risk CTVs were calculated for each patient from variances of interfractional shape variations on each vertex of three-dimensional CTV point distributions, which were manually obtained from CTV contours on the CBCT images. PTV margins were calculated using the setup errors with and without CTV shape variations for each risk CTV. Six treatment plans were retrospectively made by using the PTV margins with and without CTV shape variations for the three risk CTVs of 5 test patients. Furthermore, the treatment plans were applied to CBCT images for investigating the impact of shape variations on PTV margins. Results: The percentages of population to cover with the PTV, which satisfies the CTV D98 of 95%, with and without the shape variations were 89.7% and 74.4% for high risk, 89.7% and 76.9% for intermediate risk, 84.6% and 76.9% for low risk, respectively. Conclusion: PTV margins taking into account CTV shape variation provide significant improvement of applicable percentage of population (P < 0.05). This study suggested that CTV shape variation should be taken consideration into determination of the PTV margins.
ISSN 00942405
Educational Use Research
Learning Resource Type Article
Publisher Date 2016-06-15
Publisher Place United States
Journal Medical Physics
Volume Number 43
Issue Number 6


Open content in new tab

   Open content in new tab