Access Restriction

Author Cheymol, G. ♦ Villard, J.F. ♦ Gusarov, A. ♦ Brichard, B.
Sponsorship IEEE Nuclear and Plasma Sciences Society ♦ Computer Applications in Nuclear and Plasma Sciences (CANPS) ♦ Lawrence Berkeley Lab. ♦ Lawrence Livermore Nat. Lab. ♦ APS ♦ College of William and Mary ♦ Continuous Electron Beam Accelerator Facility ♦ NASA ♦ Defence Nuclear Agency ♦ Sandia National Laboratories ♦ Jet Propulsion Laboratory ♦ Brookhaven Nat. Lab. ♦ Lawrence Livermore Nat. Lab ♦ IEEE/NPPS Radiat. Effects Committee ♦ Defence Nuclear Agency/DoD ♦ Sandia National Laboratories/DOE ♦ Jet Propulsion Laboratory/NASA ♦ Phillips Lab./DoD
Source IEEE Xplore Digital Library
Content type Text
Publisher Institute of Electrical and Electronics Engineers, Inc. (IEEE)
File Format PDF
Copyright Year ©1963
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Physics ♦ Modern physics ♦ Technology ♦ Medicine & health ♦ Engineering & allied operations ♦ Applied physics
Subject Keyword Inductors ♦ Radiation effects ♦ Temperature sensors ♦ Optical sensors ♦ Temperature measurement ♦ Fiber optics ♦ white light interferometry ♦ Extensometer ♦ Fabry Perot sensor ♦ irradiation ♦ material testing reactor ♦ optical fibre sensor
Abstract In the framework of the Joint Instrumentation Laboratory (LCI), gathering resources from SCK-CEN (Belgium) and CEA (France), we are developing an optical sensor in order to accurately measure radiation-induced elongation of material placed in the core of a Material Testing Reactor (MTR). This extensometer displays common advantages of Fibre Optic (FO) sensors: high resolution, easy remote sensing and multiplexing, and also compact size which is of particular interest for in pile experiments with little room available. In addition, light weight reduces gamma heating hence limiting the thermal effect. In accordance with the specifications, the sensor has preferably two fixing points defining a gauge length of 10 to 15 mm. The diameter is less than 2 mm. Intense gamma and neutron irradiation as well as high temperatures are the most difficult environment conditions to withstand. Reactor radiation produces huge losses in common optical fibre. The losses can be limited by selecting the fibres, the wavelength range (800-1200 nm), and a measurement based on interferometry (largely insensitive to losses in the fibre thanks to the wavelength encoding of the useful signal). Heavy neutron-mainly-and gamma flux such as in MTR, also produce compaction of silica, resulting in a significant drift and preventing the use of commercial FO sensors in such environment. Knowing this issue we revised the basic scheme of Extrinsic Fabry Perot Interferometer (EFPI) in order to limit the effects of compaction. A first sensor prototype fixed on a stainless steel support is tested with the Smirnof test facility in the BR2 MTR in Mol (Belgium). The support is subject to a constant mechanical and thermal stress, and then his dimensions are not supposed to vary. This test shows a very low drift of the revisited EPFI design under high irradiation field in comparison with a commercial EFPI. This result has to be confirmed with second generation sensors with an increased robustness. The other difficulty to face is high temperature. Fibre optics with metal coating allow safe operation under temperatures up to 400°C and even higher. But differential dilatation between silica and typical metallic material produces differential elongation in the range of 0.7 10<sup>-2</sup> i.e 5000 με for an increase in temperature of 400°C. Such large elongation has to be considered carefully in the sensor design and its fixing on the sample. We are currently implementing metal-coated fibre and we are preparing the next in pile irradiation on the BR2 reactor scheduled for end of 2011. Other applications of the sensor can be considered.
Description Author affiliation :: ANS/ARI, SCK.CEN, Mol, Belgium
Author affiliation :: Nucl. Energy Div., CEA, Gif-sur-Yvette, France
Author affiliation :: Reactors Studies Dept., CEA, St. Paul Lez Durance, France
ISSN 00189499
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-01-01
Publisher Place U.S.A.
Rights Holder Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Volume Number 60
Issue Number 5
Size (in Bytes) 285.58 kB
Page Count 4
Starting Page 3781
Ending Page 3784

Source: IEEE Xplore Digital Library