Thumbnail
Access Restriction
Subscribed

Author Dougherty, Ralph C.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©1997
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences
Subject Keyword Analytical Chemistry ♦ Biotechnology ♦ Organic Chemistry ♦ Proteomics ♦ Bioinformatics
Abstract Gasphase dissociative electron-transfer (ET) reactions are examined in the light of modern electron-transfer theory and a perturbation molecular orbital (PMO) model for ion-molecule collision rates. Two dissociative ET reactions reported by Knighton and Grimsrud—the reaction of azulene anion with dibromodifluoromethane and with carbon tetrachloride—happened in the inverted region of the relationship between reaction rate and free energy. Carbon-halogen vibration participation in dissociative ET reactions is demonstrated in two reaction series. Carbon-hydrogen stretch (3050 cm$^{−1}$) activation of electron transfer happened in the most exothermic reaction series: dissociative capture to form bromide from bromotrichloromethane The reasons for the failure of classical ion-molecule collision theory to give a quantitative account of reactive ion-molecule collision rates are presented in some detail. The fundamental failure is a result of a previously unappreciated change in the polarizability of a molecule when the orbitals on the molecule overlap with those on an adjacent ion. The molecular orbital-based collision model used here avoids the need to evaluate the changes in the polarizability tensor with overlap.
ISSN 10440305
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1997-01-01
Publisher Institution The American Society for Mass Spectrometry
Publisher Place New York
e-ISSN 18791123
Journal Journal of The American Society for Mass Spectrometry
Volume Number 8
Issue Number 5
Page Count 9
Starting Page 510
Ending Page 518


Open content in new tab

   Open content in new tab
Source: SpringerLink