Thumbnail
Access Restriction
Subscribed

Author Zhou, J. ♦ Hefta, S. ♦ Lee, T. D.
Source SpringerLink
Content type Text
Publisher Springer-Verlag
File Format PDF
Copyright Year ©1997
Language English
Subject Domain (in DDC) Natural sciences & mathematics ♦ Chemistry & allied sciences
Subject Keyword Analytical Chemistry ♦ Biotechnology ♦ Organic Chemistry ♦ Proteomics ♦ Bioinformatics
Abstract A new methodology has been developed for high sensitivity electrospray ionization mass spectrometric analyses of phenylthiohydantoin (PTH) amino acid derivatives. Key components of the methodology are the use of a solvent system consisting of methanol/dichloromethane (1:1 v/v) containing 5-mM lithium triflate, a stainless steel electrode having a relatively large surface area, and a microscale electrospray nozzle that provides for stable electrospray at flow rates in the range of 100–500 nL/min. A linear response for the absolute signal intensity of the protonated molecule was observed for a number of derivatives over the concentration range of 50–1000 fmol/µL. For all except the arginine derivative, there was a decrease in the signal intensity with increasing flow rate with 100–300 nL/min being optimum. Collision induced dissociation (CID) product ion spectra were obtained for 21 derivatives including carboxymethyl cysteine and dehydrothreonine. Leucine and isoleucine can be distinquished on the basis of their CID product ion spectra. A subfemtomole detection limit was demonstrated for the phenylalanine PTH derivative in a selected reaction monitoring (SRM) experiment. Samples from an automated Edman microsequencer run have been analyzed using the new technique and compared to results obtained by conventional high-performance liquid chromatography analysis with UV detection. This work demonstrates the feasibility of using mass spectrometry to identify and quantitate the products generated by automated protein microsequencing using standard Edman degradation chemistry.
ISSN 10440305
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 1997-01-01
Publisher Institution The American Society for Mass Spectrometry
Publisher Place New York
e-ISSN 18791123
Journal Journal of The American Society for Mass Spectrometry
Volume Number 8
Issue Number 11
Page Count 10
Starting Page 1165
Ending Page 1174


Open content in new tab

   Open content in new tab
Source: SpringerLink