Thumbnail
Access Restriction
Subscribed

Author Castro, Pablo Samuel ♦ Zhang, Daqing ♦ Chen, Chao ♦ Li, Shijian ♦ Pan, Gang
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2014
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Taxi GPS ♦ Smart cities ♦ Urban computing
Abstract Vehicles equipped with GPS localizers are an important sensory device for examining people’s movements and activities. Taxis equipped with GPS localizers serve the transportation needs of a large number of people driven by diverse needs; their traces can tell us where passengers were picked up and dropped off, which route was taken, and what steps the driver took to find a new passenger. In this article, we provide an exhaustive survey of the work on mining these traces. We first provide a formalization of the data sets, along with an overview of different mechanisms for preprocessing the data. We then classify the existing work into three main categories: social dynamics, traffic dynamics and operational dynamics. Social dynamics refers to the study of the collective behaviour of a city’s population, based on their observed movements; Traffic dynamics studies the resulting flow of the movement through the road network; Operational dynamics refers to the study and analysis of taxi driver’s modus operandi. We discuss the different problems currently being researched, the various approaches proposed, and suggest new avenues of research. Finally, we present a historical overview of the research work in this field and discuss which areas hold most promise for future research.
ISSN 03600300
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2013-12-01
Publisher Place New York
e-ISSN 15577341
Journal ACM Computing Surveys (CSUR)
Volume Number 46
Issue Number 2
Page Count 34
Starting Page 1
Ending Page 34


Open content in new tab

   Open content in new tab
Source: ACM Digital Library