Thumbnail
Access Restriction
Open

Author Alhaidari, A. D.
Source arXiv.org
Content type Text
File Format PDF
Date of Submission 2004-07-31
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Natural sciences & mathematics ♦ Physics
Subject Keyword High Energy Physics - Theory ♦ physics:hep-th
Abstract We define a superalgebra S2(N/2) as a Z2 graded algebra of dimension 2N+3, where N is a positive, odd integer. The even component is a three-dimensional abelian subalgebra, while the odd component is made up of two N-dimensional, mutually conjugate algebras. For N = 1, two of the three even elements become identical, resulting in a four-dimensional superalgebra which is the graded extension of the SO(2,1) Lie algebra that has recently been introduced in the solution of the Dirac equation for spinn 1/2. Realization of the elements of S2(N/2) is given in terms of differential matrix operators acting on an N+1 dimensional space that could support a representation of the Lorentz space-time symmetry group for spin N/2. The N = 3 case results in a 4x4 matrix wave equation, which is linear and of first order in the space-time derivatives. We show that the "canonical" form of the Dirac Hamiltonian is an element of this superalgebra.
Educational Use Research
Learning Resource Type Article
Page Count 16


Open content in new tab

   Open content in new tab