Thumbnail
Access Restriction
Open

Author Testa, Paola ♦ Huenemoerder, David P. ♦ Schulz, Norbert S. ♦ Ishibashi, Kazunori
Source arXiv.org
Content type Text
File Format PDF
Date of Submission 2008-06-30
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Natural sciences & mathematics ♦ Astronomy & allied sciences ♦ Physics
Subject Keyword Astrophysics ♦ physics:astro-ph
Abstract We present Chandra-HETGS observations of the Herbig Ae star HD 104237 and the associated young stars comprising lower mass stars, in the 0.15-1.75\msol mass range, in their pre-main sequence phase. The brightest X-ray source in the association is the central system harboring the Herbig Ae primary, and a K3 companion. Its X-ray variability indicates modulation possibly on time scales of the rotation period of the Herbig Ae star, and this would imply that the primary significantly contributes to the overall emission. The spectrum of the Herbig Ae+K3 system shows a soft component significantly more pronounced than in other K-type young stars. This soft emission is reminiscent of the unusually soft spectra observed for the single Herbig Ae stars HD 163296 and AB Aur, and therefore we tentatively attribute it to the Herbig Ae of the binary system. The HETGS spectrum shows strong emission lines corresponding to a wide range of plasma temperatures. The He-like triplet of MgXI and NeIX suggest the presence of plasma at densities of about $10^{12}$ cm$^{-3}$, possibly indicating accretion related X-ray production mechanism. The analysis of the zero-order spectra of the other sources indicates X-ray emission characteristics typical of pre-main sequence stars of similar spectral type, with the exception of the T Tauri HD104237-D, whose extremely soft emission is very similar to the emission of the classical T Tauri star TW Hya, and suggests X-ray production by shocked accreting plasma.
Description Comment: accepted for publication on the Astrophysical Journal
Educational Use Research
Learning Resource Type Article


Open content in new tab

   Open content in new tab