Thumbnail
Access Restriction
Open

Author Zelyak, Oleksandr ♦ Murthy, Ganpathy
Source arXiv.org
Content type Text
File Format PDF
Date of Submission 2008-06-04
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Natural sciences & mathematics ♦ Physics
Subject Keyword Condensed Matter - Mesoscale and Nanoscale Physics ♦ physics:cond-mat
Abstract We study the persistent current of noninteracting electrons subject to a pointlike magnetic flux in the simply connected chaotic Robnik-Berry quantum billiard, and also in an annular analog thereof. For the simply connected billiard we find a large diamagnetic contribution to the persistent current at small flux, which is independent of the flux and is proportional to the number of electrons (or equivalently the density since we keep the area fixed). The size of this diamagnetic contribution is much larger than mesoscopic fluctuations in the persistent current in the simply connected billiard, and can ultimately be traced to the response of the angular momentum $l=0$ levels (neglected in semiclassical expansions) on the unit disk to a pointlike flux at its center. The same behavior is observed for the annular billiard when the inner radius is much smaller than the outer one, while the usual fluctuating persistent current and Anderson-like localization due to boundary scattering are seen when the annulus tends to a one-dimensional ring. We explore the conditions for the observability of this phenomenon.
Educational Use Research
Learning Resource Type Article
Page Count 20


Open content in new tab

   Open content in new tab