Thumbnail
Access Restriction
Open

Author Baulieu, Laurent ♦ Zwanziger, Daniel
Source arXiv.org
Content type Text
File Format PDF
Date of Submission 2001-07-10
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Natural sciences & mathematics ♦ Physics
Subject Keyword High Energy Physics - Theory ♦ physics:hep-th
Abstract We deepen the understanding of the quantization of the Yang-Mills field by showing that the concept of gauge fixing in 4 dimensions is replaced in the 5-dimensional formulation by a procedure that amounts to an $A$-dependent gauge transformation. The 5-dimensional formulation implements the restriction of the physical 4-dimensional gluon field to the Gribov region, while being a local description that is under control of BRST symmetries both of topological and gauge type. The ghosts decouple so the Euclidean probability density is everywhere positive, in contradistinction to the Faddeev-Popov method for which the determinant changes sign outside the Gribov region. We include in our discussion the coupling of the gauge theory to a Higgs field, including the case of spontaneously symmetry breaking. We introduce a minimizing functional on the gauge orbit that could be of interest for numerical gauge fixing in the simulations of spontaneously broken lattice gauge theories. Other new results are displayed, such as the identification of the Schwinger-Dyson equation of the five dimensional formulation in the (singular) Landau gauge with that of the ordinary Faddeev-Popov formulation, order by order in perturbation theory.
Description Reference: JHEP 0108:015,2001
Educational Use Research
Learning Resource Type Article
Page Count 34


Open content in new tab

   Open content in new tab