Access Restriction

Author Ackermann, Heiner ♦ Rglin, Heiko ♦ Vcking, Berthold
Source ACM Digital Library
Content type Text
Publisher Association for Computing Machinery (ACM)
File Format PDF
Copyright Year ©2008
Language English
Subject Domain (in DDC) Computer science, information & general works ♦ Data processing & computer science
Subject Keyword Congestion games ♦ Nash equilibria ♦ Convergence ♦ Local search
Abstract We study the impact of combinatorial structure in congestion games on the complexity of computing pure Nash equilibria and the convergence time of best response sequences. In particular, we investigate which properties of the strategy spaces of individual players ensure a polynomial convergence time. We show that if the strategy space of each player consists of the bases of a matroid over the set of resources, then the lengths of all best response sequences are polynomially bounded in the number of players and resources. We also prove that this result is tight, that is, the matroid property is a necessary and sufficient condition on the players' strategy spaces for guaranteeing polynomial-time convergence to a Nash equilibrium. In addition, we present an approach that enables us to devise hardness proofs for various kinds of combinatorial games, including first results about the hardness of market sharing games and congestion games for overlay network design. Our approach also yields a short proof for the PLS-completeness of network congestion games. In particular, we show that network congestion games are PLS-complete for directed and undirected networks even in case of linear latency functions.
ISSN 00045411
Age Range 18 to 22 years ♦ above 22 year
Educational Use Research
Education Level UG and PG
Learning Resource Type Article
Publisher Date 2008-12-01
Publisher Place New York
e-ISSN 1557735X
Journal Journal of the ACM (JACM)
Volume Number 55
Issue Number 6
Page Count 22
Starting Page 1
Ending Page 22

Open content in new tab

   Open content in new tab
Source: ACM Digital Library