Thumbnail
Access Restriction
Open

Author Hoek, Gerard ♦ Krishnan, Ranjini M. ♦ Beelen, Rob ♦ Peters, Annette ♦ Ostro, Bart ♦ Brunekreef, Bert ♦ Kaufman, Joel D.
Source Paperity
Content type Text
Publisher BioMed Central
File Format PDF ♦ HTM / HTML
Copyright Year ©2013
Abstract Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric. There is a significant number of new studies on long-term air pollution exposure, covering a wider geographic area, including Asia. These recent studies support associations found in previous cohort studies on PM2.5. The pooled effect estimate expressed as excess risk per 10 μg/m3 increase in PM2.5 exposure was 6% (95% CI 4, 8%) for all-cause and 11% (95% CI 5, 16%) for cardiovascular mortality. Long-term exposure to PM2.5 was more associated with mortality from cardiovascular disease (particularly ischemic heart disease) than from non-malignant respiratory diseases (pooled estimate 3% (95% CI −6, 13%)). Significant heterogeneity in PM2.5 effect estimates was found across studies, likely related to differences in particle composition, infiltration of particles indoors, population characteristics and methodological differences in exposure assessment and confounder control. All-cause mortality was significantly associated with elemental carbon (pooled estimate per 1 μg/m3 6% (95% CI 5, 7%)) and NO2 (pooled estimate per 10 μg/m3 5% (95% CI 3, 8%)), both markers of combustion sources. There was little evidence for an association between long term coarse particulate matter exposure and mortality, possibly due to the small number of studies and limitations in exposure assessment. Across studies, there was little evidence for a stronger association among women compared to men. In subjects with lower education and obese subjects a larger effect estimate for mortality related to fine PM was found, though the evidence for differences related to education has been weakened in more recent studies.
Learning Resource Type Article
Publisher Date 2013-05-28
e-ISSN 1476069X
Journal Environmental Health
Issue Number 12